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The stability of travelling wave Chapman–Jouguet and moderately overdriven
detonations of Zeldovich–von Neumann–Döring type is formulated for a general
system that incorporates the idealized gas and condensed-phase (liquid or solid)
detonation models. The general model consists of a two-component mixture with
a one-step irreversible reaction between reactant and product. The reaction rate
has both temperature and pressure sensitivities and has a variable reaction order.
The idealized condensed-phase model assumes a pressure-sensitive reaction rate, a
constant-γ caloric equation of state for an ideal fluid, with the isentropic derivative
γ = 3, and invokes the strong shock limit. A linear stability analysis of the steady,
planar, ZND detonation wave for the general model is conducted using a normal-
mode approach. An asymptotic analysis of the eigenmode structure at the end of
the reaction zone is conducted, and spatial boundedness (closure) conditions formally
derived, whose precise form depends on the magnitude of the detonation overdrive
and reaction order. A scaling analysis of the transonic flow region for Chapman–
Jouguet detonations is also studied to illustrate the validity of the linearization
for Chapman–Jouguet detonations. Neutral stability boundaries are calculated for
the idealized condensed-phase model for one- and two-dimensional perturbations.
Comparisons of the growth rates and frequencies predicted by the normal-mode
analysis for an unstable detonation are made with a numerical solution of the
reactive Euler equations. The numerical calculations are conducted using a new,
high-order algorithm that employs a shock-fitting strategy, an approach that has
significant advantages over standard shock-capturing methods for calculating unstable
detonations. For the idealized condensed-phase model, nonlinear numerical solutions
are also obtained to study the long-time behaviour of one- and two-dimensional
unstable Chapman–Jouguet ZND waves.

1. Introduction
A detonation is a form of propagating wavefront that can occur in gaseous, liquid

or solid explosives. It has a structure consisting of a lead shock which is sustained
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by chemical reaction in a following reaction zone. In gases, detonation fronts tend to
propagate in a highly unsteady manner, the most common illustration of which is the
formation of spectacular fish-scale patterns on the walls of rectangular shock tubes
lined with soot-covered aluminium foil (Fickett & Davis 1979). Detonation speeds
in gases occur in the range of 1000–2000 m s−1, with peak shock pressures of the
order of 10–100 kPa. On the other hand, in solid explosives, detonation speeds occur
in the range 6000–8000 m s−1, with peak pressures of the order of tens of gigapascals
(Fickett & Davis 1979).

The mathematical and numerical modelling of detonation waves is almost
invariably undertaken in the context of the compressible, inviscid Euler equations
of motion accounting for heat addition from chemical reaction. Steady, planar
detonation wave solutions can be constructed in the context of this model.
The most familiar are known as ZND waves, after Zeldovich, von Neumann
and Döring (Fickett & Davis 1979). The ZND wave profile consists of a
sharp (discontinuous) shock front, followed by a finite zone of chemical reaction
(in which the flow is subsonic relative to the shock), which terminates at
a location termed here as the ‘final point’. The (inert) flow downstream of
the final point is dependent on the nature of the rear boundary. Fickett &
Davis (1979) restrict the term ZND to the case of a single irreversible reaction
of positive thermicity (a quantity which measures the conversion of chemical bond
energy to macroscopic translational energy), and we will adopt this convention in
the following. Each wave of ZND type has a minimum sustainable detonation speed,
DCJ, known as the Chapman–Jouguet (or CJ) speed where a sonic flow point (relative
to the detonation shock) arises at the final point. Such waves have the property that
the reaction zone between the shock and sonic point is acoustically isolated from the
flow structure downstream of the sonic point. Any ZND wave travelling with a speed
higher than DCJ is called overdriven, and must be mechanically supported in some
fashion, e.g. by a driving piston. In this case, the region of flow between the shock
and supporting boundary is subsonic. Between the final point and the supporting
boundary there is a region of spatially uniform flow. For waves of CJ type, the
detonation can be supported, in which case the region downstream of the final point
consists of sonic spatially uniform flow, or unsupported, in which case there is a
region of unsteady supersonic flow downstream of the sonic final point, where an
expansion (or Taylor) wave connects the state at the final point to the rear boundary.
In some cases, the Taylor wave may not be directly attached to the final point.

In gaseous explosives, such steady, planar solutions are rarely observed in
practice. Consequently, the linear and nonlinear stability of steady, planar, gas phase
detonations has been studied extensively via analytical and numerical investigations.
These analyses are based on a flow model consisting of the reactive form of the
Euler equations, as discussed above, but in addition assume caloric and thermal
equations of state for an ideal reactive gas. The most commonly studied reaction
model involves an assumption of one-step, irreversible, mole-preserving chemistry
with an Arrhenius temperature-sensitive rate form and simple depletion (i.e. unit
reaction order). With these assumptions, we will label this system as the idealized gas
phase model. Analyses of the linear stability properties of detonations governed by
the idealized gas phase model, that solve the linearized system without asymptotic
approximation, include those by Erpenbeck (1964), Lee & Stewart (1990), Bourlioux,
Majda & Roytburd (1991a), Bourlioux & Majda (1992), Sharpe (1997) and Short &
Stewart (1998). All these studies, except Erpenbeck (1964), employ a normal-mode
approach. These papers highlight a bifurcation parameter family consisting of four
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primary members: the detonation overdrive, the activation energy of the reaction,
the heat release and the isentropic derivative. Although there are exceptions, the
basic stability behaviour within certain ranges can be characterized as follows:
detonations tend to become unstable to one- and multi-dimensional disturbances
for decreasing overdrive, increasing heat release, increasing activation energy and
decreasing isentropic derivative. Several linear stability studies of detonations with
more complex reaction models have also been conducted, including two-step models
(e.g. Short & Sharpe 2003), three-step (e.g. Short & Dold 1996; Short & Quirk
1997; Sanchez et al. 2001) and pathological models (e.g. Sharpe 1999). Gorchkov
et al. (2007) have recently presented a stability formulation that applies to general
equations of state and arbitrarily complex reaction mechanisms.

Most of the studies on nonlinear detonation stability have been conducted via
high resolution numerical simulation of detonations governed by the idealized gas
phase model (e.g. Bourlioux et al. 1991a; Bourlioux & Majda 1992; Sharpe & Falle
1999; Gamezo et al. 2000; Sharpe 2001; Ng et al. 2005; Henrick, Aslam & Powers
2006; Henrick 2007). These studies appear to capture successfully the main form of
(quasi) one-dimensional instabilities observed experimentally, including single-period
limit cycle oscillations, period-doubling bifurcated solutions and apparently chaotic
evolutions. They also capture the multi-dimensional fish-scale patterns caused by the
propagation of triple shock point interactions transverse to the main detonation front.
These basic features remain when multi-step chemistry is employed (e.g. Radulescu
et al. 2002). In addition to the direct simulation approaches, both one- and two-
dimensional weakly nonlinear evolution equations about linear neutral stability points
have also been constructed (Bourlioux et al. 1991a; Majda & Roytburd 1992). Several
asymptotic approaches also have been formulated for investigating the linear and non-
linear stability of detonation, that invoke a limiting decomposition of the underlying
steady wave to make analytical progress. Examples include include low-frequency
formulations (e.g. Yao & Stewart 1996; Short & Sharpe 2003), high overdrive limits
(e.g. Clavin & He 1996; Clavin, He & Williams 1997) and weak heat release limits
(e.g. Short & Stewart 1999; Clavin & Williams 2002; Daou & Clavin 2003).

On the other hand, quantification of the reaction wave structure in detonating liquid
and solid explosives is limited. The extreme high-pressure environment (∼30–50 GPa),
high wave speeds (6–8 km s −1) and the lack of optical transparency of solid explosives
make experimental diagnostic data collection and imaging difficult. Moreover, unlike
in gases, the high pressure of the product materials in detonating condensed-phase
explosives means there is no concept of a rigid confining wall. Particularly for lightly
confined explosives, the wall compressibility (low impedance) and lateral expansion
of the flow at the charge edge would act as a poor reflector of any transverse waves
generated by an unstable detonation front. In addition, for light confinement, so-called
failure waves can be generated at the confiner boundary. These interact with each other
in a similar fashion to triple point interactions in gas phase detonations, forming pat-
terns similar to those observed on soot foil records, but their structure is different from
the triple shock wave structure seen in gaseous detonations (Fickett & Davis 1979).

That said, there is convincing experimental evidence that detonations in acetone-
diluted and heterogeneous liquid nitromethane do exhibit an irregular unstable front
structure (Davis 1981; Engelke & Bdzil 1983). On the other hand, laser-based
interferometry measurements of particle velocities in the reaction zone of several
other condensed-phase explosives do not indicate any evidence of large-scale spatial
instabilities. Such measurements have been conducted for detonations in pure and
commercial grade liquid nitromethane (Sheffield et al. 2002), in the heterogeneous
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HMX-based solid explosive PBX-9501 (Gustavsen, Sheffield & Alcon 2000), and
in the TATB-based solid explosive PBX-9502 (Seitz et al. 1989). Since the particle
velocity traces are broadly reproducible for a given explosive, one can conclude
that the underlying reaction zone structure must be close to the idealized one-
dimensional ZND structure, and that any three-dimensional multi-wave instability
that is present would have to be of significantly smaller amplitude than the bulk
one-dimensional spatial variation through the reaction zone (Sheffield et al. 2002).
Measurements of velocity against front curvature for detonations propagating in
cylindrical sticks of PBX-9502 (Hill, Bdzil & Aslam 2002) show a very regular
continuous variation, a finding that also reinforces this conclusion. Based on these
observations, it would appear that detonations in a majority of condensed-phase
explosives (except for certain forms of diluted nitromethane) do not show significant
time-dependent reaction zone instability.

From a modelling viewpoint, the ability to accurately predict detonation behaviour
in condensed-phase explosives is hampered by the lack (and complexity) of accurate
equations of state and of suitable reaction models. One popular, and straightforward,
model that is often used in the context of condensed-phase detonation modelling
consists of a one-step, irreversible reaction with a pressure-sensitive reaction rate (r)
of the form

r = k(1 − λ)νpn, (1.1)

where k is a rate constant, λ is a reaction progress variable, ν is the reaction order, and
n is a measure of the pressure sensitivity. Upstream pressure is ignored (the so-called
strong shock limit). This model also consists of a constant-γ caloric equation of state
appropriate to an ideal gas, in which the isentropic derivative γ is assumed to take
the value γ = 3. The choice of γ gives a detonation pressure at the CJ point that is in
the appropriate range for condensed-phase systems. This model, which we hereafter
now refer to as the ‘idealized condensed-phase model’, has been extensively used for
the theoretical analysis of the properties of condensed-phase detonations (Fickett &
Davis 1979; Bdzil et al. 2003). Pressure-sensitive reaction rates are also one of the
primary components of the popular ‘ignition and growth’ style of reactive burn models
commonly used for modelling detonations in high explosive systems (Lee & Tarver
1980; Tarver, Kury & Breithaupf 1997).

The main concern of the present paper is the study of the stability of steady, planar
(ZND) detonations for the idealized condensed-phase model. The ZND detonation
structure defined by this model has some interesting properties that distinguishes itself
from the ZND detonation structure obtained from the idealized gas phase model.
For instance, the reaction rate always takes its maximum at the shock. Also, while
for simple depletion (ν =1) the reaction zone is formally of infinite spatial extent for
both overdriven (f > 1) and Chapman–Jouguet (f = 1) waves (as it is for ν > 1), for
sub-unity reaction orders, ν < 1, the reaction zone is of finite spatial extent for f � 1.

Here f represents the detonation overdrive factor. In addition, for overdriven waves
with ν > 0, the thermodynamic state variables all possess a zero spatial gradient at
the final point (where λ= 1), as is the case for Chapman–Jouguet (f = 1) waves with
ν > 1/2. For square-root depletion (ν = 1/2) and f = 1, the thermodynamic variables
have a finite spatial gradient at λ= 1, and for f = 1, ν < 1/2, this spatial gradient
is infinite at λ=1. In this paper, we restrict the reaction order to lie in the range
1/2 � ν � 1. For the linear stability analysis, we will consider both CJ (f = 1) and
moderately overdriven waves (f > 1, f −1 =O(1)). The analysis for weakly overdriven
waves, f − 1 � 1, will be considered in a future article.
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The paper is laid out as follows: in § 2, we provide a description of the general
detonation model, from which both the idealized condensed-phase and gas-phase
models can be extracted. The ZND detonation structure for the idealized condensed-
phase model for both CJ and moderately overdriven waves is explored in § 3. In § 4,
the linear stability analysis of a ZND detonation for the general detonation model is
formulated using a normal-mode approach. Of particular importance for this analysis
is the derivation of appropriate spatial boundedness conditions at the end of the
steady reaction zone for the eigenfunction system. This is studied in § 5, where it
is found that closure conditions are required that cover six different cases: for CJ
waves (f =1) with reaction orders ν = 1/2, 1/2 < ν < 1, and ν =1; and for moderately
overdriven waves (f > 1, f − 1 =O(1)) with reaction orders ν = 1/2, 1/2 < ν < 1 and
ν = 1. In § 6, additional comments are made regarding the role of the transonic layer
at the end of the detonation reaction zone for CJ detonations in the linear stability
formulation, and on the nature of the decay of linearly perturbed stable detonations.
In § 7, solutions of the linear stability formulation for ZND detonation waves defined
by the idealized condensed-phase model are presented. Comparisons of the predictions
of the normal-mode analysis with some one- and two-dimensional direct numerical
integration calculations of unstable detonation waves under the idealized condensed-
phase model are made in § 8. In § 9, one- and two-dimensional nonlinear evolutions
of unstable Chapman–Jouguet detonations for the idealized condensed-phase model
are investigated.

2. General detonation model
2.1. Equations

The non-dimensional equations of motion coupled with an equation for species
conservation for the two component reaction F → P are given by

Dv

Dt l
− v(∇l · ul) = 0,

Dul

Dt l
= −v∇lp,

De

Dt l
= −pv(∇l · ul),

Dλ

Dt l
= W̄ (p, v, λ), (2.1)

for the volume v, pressure p, specific internal energy e, laboratory frame velocity
ul = (ul, wl) and reaction progress variable λ ( = 1− fuel mass fraction). We adopt the
constant-γ caloric equation of state appropriate for an ideal gas,

e = e(p, v, λ) =
pv

(γ − 1)
− Qλ, (2.2)

where Q is the heat of reaction in converting F to P, and γ is the isentropic
derivative. The (chemically) frozen sound speed c is obtained from (2.2) as

c2 = v2(p + e,v)/e,p = γpv. (2.3)

The reaction rate is given by

W̄ =

{
kpn(1 − λ)ν exp (−θ/pv) , 0 � λ< 1,

0, λ=1,
(2.4)

where λ= 0 represents unreacted fuel and λ= 1 is fully depleted fuel. This rate
choice has three variable components: an algebraic pressure sensitivity measured
by n, an Arrhenius temperature sensitivity measured by the activation energy
θ, and the reaction (or depletion) order ν. The one-step reaction model with a
fractional or integer reaction order represents a global approximation to a complex
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set of reactions that occur during the detonation of high explosives, and is an
approximation frequently employed in detonation modelling studies (Fickett & Davis
1979; Bdzil et al. 2003). For this study, the reaction order is taken to lie in the range
1/2 � ν � 1.

The above equations have been non-dimensionalized such that

v =
ṽ

ṽu

, u =
ũ

D̃
, p =

p̃

D̃2/ṽu

, x =
x̃

l̃
, t =

t̃

l̃/D̃
,

e =
ẽ

D̃2
, c2 =

c̃2

D̃2
, Q =

Q̃

D̃2
, θ =

Ẽ

D̃2
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.5)

where ṽu is the upstream specific volume, D̃ is the dimensional (ZND) planar

steady detonation velocity and Ẽ is the dimensional activation energy. The rate
constant k is determined by the reference length scale l̃ which sets λ=1/2 at
x = 1 in the non-dimensionalized ZND wave, i.e. the standard half-reaction length
scaling.

For ease of analysis, we now introduce a reaction progress variable transformation
given by

β = (1 − λ)1/2 , (2.6)

where β =1 is unreacted fuel and β = 0 is fully depleted, whereupon the species
conservation equation becomes

Dβ

Dt
= −1

2
kpnβ2ν−1 exp (−θ/pv) = W. (2.7)

Note that

W,p =

(
n

p
+

θ

vp2

)
W, W,v =

θ

v2p
W, W,β =(2ν − 1)

W

β
, (2.8)

so that W,β = 0 for square-root depletion order (ν =1/2).

2.2. Shock relations

The equations of motion are subject to the standard set of Euler conservation laws
across the lead shock front. Given a shock with velocity V l = V l(xl , t), these jump
relations are

[ρ(ul − V l) · nl] = 0, [ρul(ul − V l) · nl + pnl] = 0,[
m

(
e + 1

2
ul · ul

)
+ p(ul · nl)

]
= 0,

⎫⎬⎭ (2.9)

for shock normal nl , where

m = ρ(ul − V l) · nl (2.10)

is the constant mass flux across the shock, and the density ρ = v−1. If the shock
surface is F (x l , t) = 0, the shock normal and normal shock velocity are denoted by

nl =
∇lF

|∇lF | , V l · nl = − 1

|∇lF |
∂F

∂t
. (2.11)
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2.3. Idealized gas and condensed-phase models

To define the idealized gas and condensed-phase detonation models, we introduce the
parameter

δ =
c̃2

u

D̃2
CJ

, 0 � δ < 1, (2.12)

which represents the inverse of the square of the Chapman–Jouguet detonation
Mach number (D̃CJ /c̃u). The idealized condensed-phase model is set by assuming an
activation energy independent reaction rate (θ = 0), the strong shock limit (defined
by δ = 0), and an isentropic derivative γ = 3. The ideal gas phase model is defined by
assuming a pressure-independent reaction rate (n= 0), finite shock strength (δ > 0), an
isentropic derivative typically in the range 1 <γ � 1.6, and simple reactant depletion
(ν = 1).

3. One-dimensional steady-state solutions
The above model supports a one-dimensional, steady, travelling wave solution. In a

reference frame x = xl − t l, with a shifted velocity defined as u = ul − 1, the travelling
wave structure can be described in terms of the reaction variable β through the
relations

v = −u, p = 1 +
δ

γf
+ u,

u = − γ

(γ + 1)

(
1 +

δ

γf

)
+

(1 − δ)

(γ + 1)
√

f

[
(f − 1)

(1 − δ2/f )

(1 − δ)2
+ β2

]1/2

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.1)

Here f is the usual detonation overdrive factor, f =D2δ, where D is the detonation
Mach number. The planar Chapman–Jouguet wave has f =1, and is the limiting
steady travelling wave in which the flow is identically sonic at the point of complete
reaction (final point), or c = −u at β = 0. The scaled heat of reaction Q is related to
δ by

Q =
(1 − δ)2

2f (γ 2 − 1)
, (3.2)

so that in the strong shock limit (δ =0), Q =1/[2f (γ 2 − 1)]. The detonation shock
lies at x = 0, while the reaction zone structure lies in the region x < 0.

The spatial extent of the steady reaction zone for a given β is

x =

∫ β

1

u

W
dβ (3.3)

where for f � 1 as β → 0, W = O(β2ν−1) and u = O(1). Thus, for simple depletion
(ν = 1), x =O(ln β) as β → 0, and so that the reaction zone formally has an infinite
spatial extent for both Chapman–Jouguet (f = 1) and overdriven (f > 1) waves. On
the other hand, for 1/2 � ν < 1, the integral (3.3) has the asymptotic behaviour
x = x0 + O(β2(1−ν)) as β → 0, for a finite constant x0, so that the reaction zone is of
finite spatial extent for both Chapman–Jouguet and overdriven waves (f � 1). Also,
the size of the spatial gradient of u (and consequently p and v from (3.1)) as β → 0
is given by u,x = O(β2ν) for moderately overdriven waves (f > 1, f − 1 =O(1)) and
u,x =O(β2ν−1) for f =1. For depletion orders in the range 1/2 � ν � 1, the spatial
gradients of the variables p, u and v in the steady travelling wave vanish at β = 0 for
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Figure 1. Steady wave pressure variation (p) with x for: (a) f = 1, n= 2, γ =3 and
ν = 1/2 (solid), ν = 3/4 (dotted) and ν = 1 (dashed); (b) γ = 3, ν = 1/2, and n= 2, f = 1
(dash-dot-dot-dot), n= 4, f =1 (dotted), n= 2, f =1.1 (solid), n= 4, f = 1.1 (dashed).

all overdriven waves, as they do for Chapman–Jouguet waves provided the depletion
order is in the range 1/2<ν � 1. However, for ν =1/2, u,x = O(1) as β → 0, i.e. the
spatial gradients of p, u and v are finite. Consequently, for supported Chapman–
Jouguet waves there will be a discontinuity in u,x at β =0 for ν = 1/2, but u,x is
continuous and equal to zero at β = 0 for 1/2 < ν � 1. Similarly, u,x is continuous
and equal to zero for all overdriven waves with 1/2 � ν � 1. Finally, the reaction rate
W̄ = 0 at λ=1 (β =0) for 1/2 � ν � 1. However, for ν = 1/2, the rate of change of
reaction rate, W̄,x = O(1) at λ= 1, while W̄,x =0 at λ=1 for 1/2 <ν � 1. Thus, for
ν =1/2, the rate of change of reaction rate will be discontinuous at λ=1. In terms of
the reaction coordinate β, these are equivalent to the conditions W =O(1) for ν = 1/2
and W = 0 for 1/2 <ν � 1 at β =0.

We now examine some planar, steady detonation wave structures for the idealized
condensed-phase model (θ = 0, δ = 0). Figure 1(a) shows the pressure variation
through the steady Chapman–Jouguet (f = 1) detonation reaction zone (up to the first
point where β = 0) for three reaction depletion orders, with n= 2 and γ =3. Beyond
the first equilibrium point (where β = 0), there will be a uniform state corresponding
to that shown at β = 0 for supported Chapman–Jouguet waves, or typically a non-
uniform, unsteady expansion wave state for unsupported waves. It is clearly seen that
the detonation has a finite reaction zone length for ν < 1, which also increases in
length as ν increases. Similarly, figure 1(b) shows that as n increases (for fixed ν(< 1)
and f ( � 1)), the reaction zone increases in length, but also develops a significant
reaction tail (e.g. for f = 1, ν = 1/2, γ = 3 and n= 8, the steady reaction zone has a
formal length of x = −81.72. However, one-half of the fuel (0 � λ� 1/2) is depleted
in the range −1 � x � 0, while the remaining (1/2 � λ� 1) is depleted over the much
larger range −81.72 � x � −1). For a fixed value of ν and n, the length of the
reaction zone reduces in size as the wave becomes more overdriven, i.e. as f increases.
Also, for square-root depletion (ν = 1/2) and Chapman–Jouguet waves (f = 1), the
spatial gradient of pressure (p,x) is O(1) at β = 0, but for ν > 1/2, p,x =0 at β = 0
(figure 1a). For overdriven waves (f > 1), on the other hand, p,x = 0 for ν � 1/2 at
β = 0 (figure 1b).

Although the choice of γ = 3 is an appropriate one for many liquid and solid
explosives (Fickett & Davis 1979), it is instructive to examine the steady wave
variation for other choices of γ ( � 2). Figure 2 shows the pressure variation through
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Figure 2. Steady wave pressure variation (p) with x for f = 1, n= 2, ν = 1/2 and γ = 2
(dotted), γ = 3 (solid), γ =4 (dashed).
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Figure 3. (a) Steady wave rate variation W̄ and (b) steady wave rate of change of W̄ , W̄,x,
with x for n= 2, γ = 3, f = 1 with ν =1/2 (solid), ν = 3/4 (dotted) and ν = 1 (dashed).

the steady detonation wave for f = 1, ν =1/2 and n= 2 for various γ. For γ = 4,

the shock pressure is lower and the reaction zone length is shorter than that for
γ < 4. Decreasing γ increases the shock pressure, and lengthens the reaction zone.
Finally, figure 3(a) shows the variation in the steady wave reaction rate W̄ for n= 2,

f =1, γ = 3 and ν = 1/2, ν = 3/4 and ν = 1. In all cases, since the pressure is a
maximum at the shock, the reaction rate W̄ is also a maximum there. This marks
an important structural deviation from the standard temperature-sensitive Arrhenius
rate law, where the reaction rate reaches a maximum at a point internal to the reaction
zone, and typically closer to the final point than the shock. Figure 3(b) shows the
corresponding rate gradient W̄,x, which is non-zero for ν = 1/2 at λ=1, but zero for
ν > 1/2 at λ=1.

4. Linear stability analysis
Here the normal-mode linear stability analysis for the steady travelling wave

detonation solutions identified in § 3 is outlined. Although this is carried out for the
general detonation model, which incorporates both idealized gas and condensed-phase
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systems, the stability results shown in § 7 will be specific to the idealized condensed-
phase model.

4.1. Coordinate transformation

It is convenient to introduce a general coordinate transformation from (xl, zl, t l) to
(x, z, t) such that the shock location is fixed at x = 0, i.e.

x = xl − t − Ψ (z, t), zl = z, t l = t, (4.1)

where xl = t l + Ψ (zl, t l) is the shock locus in the laboratory frame. Thus the gradient
operator ∇ in the new frame is determined by the relations

∂

∂xl
=

∂

∂x
,

∂

∂zl
= −∂Ψ

∂z

∂

∂x
+

∂

∂z
,

∂

∂t l
= −

(
1 +

∂Ψ

∂t

)
∂

∂x
+

∂

∂t
. (4.2)

We also define a new velocity vector u, where ul = u + i .

4.2. Stability equations

The equations governing small (linear) perturbations to the steady travelling wave in
§ 3 are constructed via the linear expansion

Ψ = εΨ̄ (z, t), z = z∗ + ε z̄(x, z, t), ε � 1, (4.3)

which corresponds to an O(ε) deviation from the ZND state, and where

z = (v, u, w, p, β)T (4.4)

represents the vector of dependent variables. The superscript ∗ refers to the underlying
steady wave solution. Normal-mode solutions to the O(ε) linearized system are then
obtained via

Ψ̄ =Ψ0e
αt+ikz, z̄ = Ψ0z′(x)eαt+ikz, Ψ0 = O(1); (4.5)

for growth rate α and wavenumber k, where the ′ quantities indicate the (x) spatially
dependent eigenfunctions.

For the present analysis, it will prove convenient to change the independent variable
in the eigenfunctions from x to β∗, where β∗

,x = W ∗/u∗, so that

d

dx
=

W ∗

u∗
d

dβ∗ . (4.6)

After some algebra, we arrive at the set of equations that govern the linear stability
of a detonation with the generalized rate (2.4), namely

W ∗η∗

u∗ z′
,β∗ = Â∗z′ + ŝ∗

, (4.7)
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where the matrix Â∗ is defined in terms of steady state quantities as

Â =

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(αη − Wuu,β)/u + 2βQ(γ − 1)W,v (−αu2 + Wu,β(c
2 − 3u2)/u)/u

c2Wu,β/u
2 − 2βQ(γ − 1)W,v u(α + 2Wu,β/u)

0 0

− Wu,β(u
2 − 2c2)/u2 − 2βQ(γ − 1)W,v (αc2 + Wu,β(c

2 + u2)/u)/u

−W,vη/u Wη/u2

iku2 −u(α + γWu,β/u) + 2βQ(γ − 1)W,p 2Q(γ − 1)(W + βW,β)

− ic2k u(α + γWu,β/u) − 2βQ(γ − 1)W,p −2Q(γ − 1)(W + βW,β)

αη/u −ikη 0

− ic2k u(α + γWu,β/u) − 2βQ(γ − 1)W,p −2Q(γ − 1)(W + βW,β)

0 −W,pη/u αη/u − W,βη/u

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.8)

and the vector s is

s = −[αWu,β(3u2 − c2)/u2, −2Wαu,β, ikWu,βη/u,

−αWu,β(c
2 + u2)/u2, −αWη/u2].

(4.9)

The variable η is the sonic parameter for the steady wave defined as

η = u2 − c2. (4.10)

4.3. Shock relations

Using the conservation relations (2.9) and expressions for the shock normal and
velocity (2.11), the perturbation variables will satisfy the relations

u′ =
2(1 + δ/f )

γ + 1
α, p′ =

4

γ + 1
α, w′ = −2(1 − δ/f )

γ + 1
ik,

v′ = − 4δ/f

γ + 1
α, β ′ = 0,

(4.11)

at β∗ = 1, assuming no reaction occurs in the shock.

5. Eigenfunction boundedness analysis
An additional boundary condition is required to close the system (4.7) through

(4.11) in order to determine the eigenvalue α. Nominally, this must guarantee spatial
boundedness of the eigenfunction system either at β∗ =0 or x∗ = −∞, as for the
previously examined case of idealized gas phase detonations for simple depletion
(ν = 1) and for either Chapman–Jouguet (f = 1) or overdriven (f > 1) waves (Sharpe
1997). The spatial structure of the solutions to (4.7) as β → 0 are obtained below.
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From this point forward, we drop the superscript ∗ that is used to denote steady
wave components. Also, for the overdriven cases, we will only consider moderate
overdrive where f > 1, f − 1 = O(1). The structure for weakly overdriven systems
where f > 1, f − 1 � 1, introduces some additional complications due to presence of
both coordinate (β → 0) and parameter expansions (in f − 1) that will be detailed in
a separate paper. Consequently, the notation f > 1 used below is taken to imply the
moderate overdrive limit f > 1, f − 1 = O(1).

5.1. Analysis of steady wave structure β → 0

Before evaluating the structure of the solutions of the system (4.7) in the limit β → 0,

some additional details on the structure of the steady travelling detonation in various
regimes as β → 0 are required.

First, some results for steady Chapman–Jouguet detonations (f =1) and arbitrary
depletion order ν are noted. The steady-state variation with β is obtained from (3.1),
without approximation, as

u = u0 + βu1, p = p0 + βp1, v = v0 + βv1, (5.1)

where

u0 = − γ

(γ + 1)

(
1 +

δ

γ

)
, p0 =

1

(γ + 1)

(
1 +

δ

γ

)
, v0 = −u0. (5.2)

Thus u, p and v are O(1) as β → 0, i.e. have finite amplitude at the end of the
reaction zone. The sonic parameter (η = u2 − c2) in the steady wave is given by

η = βη̃, where η̃ = η̃0 + βη̃1 and η̃0 = − (1 − δ)(γ + δ)

γ + 1
, (5.3)

again without approximation, so that η = O(β) as β → 0, i.e. vanishes at the end
of the reaction zone for Chapman–Jouguet waves. Also, the velocity gradient with
respect to β is given by

u,β =
1 − δ

γ + 1
= u1, (5.4)

so that u,β = O(1) as β → 0, i.e. has a finite amplitude for f =1 at β =0.

On the other hand, for overdriven detonations (f > 1), again with arbitrary
depletion order ν, the steady-state variables are expanded in the form

u ∼ u0 + O(β2), p ∼ p0 + O(β2), v ∼ v0 + O(β2) (5.5)

as β → 0, where

u0 = − γ

(γ + 1)

(
1 +

δ

γf

)
+

(f − 1)(1 − δ2/f )

(γ + 1)
√

f (1 − δ)
, v0 = −u0,

p0 =
1

(γ + 1)

(
1 +

δ

γf

)
+

(f − 1)(1 − δ2/f )

(γ + 1)
√

f (1 − δ)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.6)

In this case, the sonic parameter η = O(1) < 1 at β = 0, i.e. the flow is subsonic
at the final point. The velocity gradient u,β is such that u,β = O(β) as β → 0, i.e.
vanishing for overdriven waves at β =0. Figure 4a shows an example of the different
limiting behaviours of the steady detonation velocity gradient near β = 0 for f = 1
and f = 1.1, under the idealized condensed-phase model (δ = 0, θ = 0, γ =3).
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Figure 4. (a) Steady velocity variation with β for n= 2, ν = 1/2 and f = 1 (solid), f = 1.1
(dashed). (b) Steady rate variation with β for n= 2, and f = 1, ν = 1/2 (solid), f = 1, ν = 0.75
(dotted), f =1.1, ν =0.5 (dashed) and f = 1.1, ν = 3/4 (dash-dot-dot-dot).

Finally, for arbitrary ν, the reaction rate (W ) has the asymptotic form

W = W̃β2ν−1, where W̃ ∼ W̃0 + βW̃1 + O(β2) and W̃0 = −kpn
0

2
e−θ/p0v0 . (5.7)

For overdriven waves (f > 1), the O(β) correction to W̃ vanishes, i.e. W̃1 = 0, but

for Chapman–Jouguet waves (f = 1), W̃1 = O(1). Also, for depletion orders in the
range 1/2 <ν � 1, W ∼ o(1) as β → 0 with W vanishing at β = 0, but for square-root
depletion ν = 1/2, W ∼ O(1), i.e. has finite amplitude at β = 0. The various behaviours
for W are shown in figure 4(b).

With the results (5.1)–(5.7) in hand, an examination of the linear system (4.7)–(4.10)
reveals that there are two potential sources of singular behaviour for the eigenfunction
solutions as β → 0. These are associated with the vanishing of steady sonic parameter,
η → 0, which occurs for Chapman–Jouguet waves, and/or a zero in the reaction rate
W → 0, which may occur for depletion orders ν > 1/2. In all, six different cases need
to be considered, and these are examined in § 5.3–5.5 below. It is found that for f = 1,

β = 0 is an irregular singular point for 1/2 <ν � 1, and a regular singular point for
ν = 1/2. For f > 1, f − 1 = O(1), β = 0 is a regular singular point for ν =1 and an
ordinary point for ν < 1. For each case, asymptotic solutions to (4.7) for β → 0 can
be found in the form

z′ =

5∑
i=1

Ci z′
hi + z′

p, (5.8)

where the z′
hi and z′

p correspond to homogeneous and particular solutions respectively
of (4.7) in the limit β → 0, and the Ci are complex constants.

5.2. Equilibrium zone analysis when β = 0 is an ordinary point

Before examining each specific case, we need to obtain some additional information
about the spatial behaviour of perturbations in the equilibrium zone of a detonation
when f > 1 and 1/2 � ν < 1. As noted above, it transpires that β = 0 is an ordinary
point of the system (4.7) for cases in which both 1/2 � ν < 1 and f > 1. An analysis
beyond the point β = 0 is then required to determine the appropriate boundedness
condition. When ν < 1, the steady travelling detonation has a reaction zone of finite
spatial extent (independently of whether f = 1 or f > 1), and for overdriven waves
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(f > 1) an equilibrium region of uniform, subsonic flow must exist beyond the end of
the reaction zone. Unsteady linear perturbations to the uniform state in this region,
of the normal-mode form (4.5), will satisfy the equations

z′
a,x = Ã0z′

a, za = (v, u, w, p)T (5.9)

where

Ã = −1

η

⎛⎜⎜⎜⎜⎜⎜⎜⎝

αη/u −αu iku2 −αu

0 αu −ic2k αu

0 0 αη/u −ikη

0 αc2/u −ic2k αu

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.10)

and the subscript zero is used to denote steady state conditions at β = 0. The

eigenvalues of Ã0 are

λ1 = − α

η0

(u0 − c0ω), λ2 = − α

η0

(u0 + c0ω), λ3,4 = − α

u0

, (5.11)

where

ω =
√

1 − η0k2/α2. (5.12)

taking Re(ω) > 0. The solution for z′
a is

z′
a =

4∑
i=1

Ci r ie
λi x , (5.13)

where the Ci are complex constants, and the eigenvectors r i are given by

r1 = [−iuα(c − uω)/cηk, iα(u − cω)/kη, 1, iαc(c − uω)/kuη]T0 ,

r2 = [−iuα(c + uω)/cηk, iα(u + cω)/kη, 1, iαc(c + uω)/kuη]T0 ,

r3 = [1, 0, 0, 0]T , r4 = [0, iku/α, 1, 0]T0 .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.14)

The solution components corresponding to λ1 and λ2 represent the propagation of
pressure waves in directions toward, and away from, the rear of the reaction zone
respectively along the forward and backward facing dx/dt = u ± c characteristics in
the steady wave. The solution components corresponding to λ3 and λ4 are associated
with entropy and vorticity variations that occur along particle paths.

When Re(α) > 0, i.e. for unstable modes, Re(λ1) < 0, while Re(λ2), Re(λ3) and
Re(λ4) are all positive. Consequently, as x → −∞, the mode corresponding to r1 is
spatially unbounded and must be eliminated. This is achieved by multiplying (5.13)
by the left eigenvector corresponding to λ1, and setting the result to zero. This gives

u′ − u0ω

c0

p′ − iku0

α
w′ = 0, (5.15)

which is the required boundedness condition when Re(α) > 0. Since the mode
corresponding to λ1 describes the propagation of acoustic signals from the equilibrium
zone into the rear of the reaction zone, the condition (5.15) is equivalent to
having a zero-amplitude signal along all the reaction zone-facing characteristics,
i.e. it is an acoustic radiation condition. For neutrally stable modes, Re(α) = 0, the
mode corresponding to λ1 is now spatially bounded at x = −∞, as are the modes



Condensed-phase detonation stability 59

corresponding to λ2, λ3 and λ4. In this case, no boundedness condition can be
applied. However, the condition to be applied in this case is again the elimination of
the mode corresponding to λ1, based on the causality principle that the instability
of the detonation wave structure should not be influenced by waves propagating
upstream from infinity. Consequently the condition that is applied for Re(α) = 0 is
again (5.15). For Re(α) � 0, (5.15) is applied at β = 0. Of course, the condition (5.15)
is that imposed by D’yakov (1954) and Kontorovich (1957) in the normal-mode
examination of the stability of an inert step shock for Re(α) � 0.

5.3. Analysis for ν = 1/2

5.3.1. Chapman–Jouguet f = 1

For a square-root depletion order and for Chapman–Jouguet detonations, we have
η =O(β) and W = O(1) as β → 0. The system (4.7) may then be written as

β z′
,β = Ãz′ + s̃, Ã=

∞∑
i=0

βiÃi , s̃ =

∞∑
i=0

βi s̃i , (5.16)

where each of the Ãi and s̃i are O(1) matrices, independent of β. Thus β = 0 is a
regular singular point of (5.16), and solutions can be obtained in a standard fashion
(Wasow 2002). The five independent homogeneous solutions take the form

z′
hi ∼ r0i + O(β), i = 1, 2, 3, 4; z′

h5 ∼ βλ5 (r05 + O(β)); (5.17)

as β → 0, with right eigenvectors

r01 = [−α2/α1, 1, 0, 0, 0]T, r02 = [−α3/α1, 0, 1, 0, 0]T, r03 = [−α4/α1, 0, 0, 1, 0]T,

r04 = [−α5/α1, 0, 0, 0, 1]T, r05 = [−1, 1, 0, 1, 0]T,

⎫⎬⎭
(5.18)

where

α1 =
u0u1

η̃0

, α2 =
u0

η̃0

(
αu0

W̃0

+ 2u1

)
, α3 = − iku3

0

η̃0W̃0

,

α4 =
u0

η̃0

(
αu0

W̃0

+ γ u1

)
, α5 = −2Q(γ − 1)

u0

η̃0

.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.19)

A particular integral can be found in the form

z′
p ∼ z′

p0 + O(β), z′
p0 = [2αu1u0/η̃0λ5, −2αu1u0/η̃0λ5, 0, −2αu1u0/η̃0λ5, 0]T . (5.20)

The eigenvalue λ5 appearing in z′
h5 is given by

λ5 = −1 − 2αu0

(1 − δ)W̃0

, (5.21)

and since 0 � δ < 1, u0 < 0 and W̃0 < 0, we have that Re(λ5) < 0 wherever

Re(α) > −(1 − δ)W̃0/2u0( < 0). Consequently, for neutrally stable or unstable modes,
i.e. with Re(α) � 0, the mode z′

h5 is spatially unbounded as β → 0, while the modes
z′
hi, i = 1..4, are spatially bounded as β → 0, each limiting to a finite amplitude.

Eliminating the spatially unbounded mode z′
h5 from the system (5.8) by setting C5 = 0

results in the leading-order compatibility relation

u′ + p′ − iku0

α
w′ − 2Q(γ − 1)

W̃0

αu0

β ′ +
W̃0u1

αu0

(v′ + 2(u′ − α) + γp′) + O(β) = 0, (5.22)
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between the components of z′, that ensures only spatially bounded solutions are
present as β → 0. The correction terms are of size O(β) as determined from (5.17).

The last two terms proportional to W̃0 that appear on the left-hand side of (5.22) are
a manifestation of the finite gradient u,x of the steady wave solution at the end of
the reaction zone (see § 3).

5.3.2. Overdriven f > 1

For the overdriven case (f > 1) with square-root depletion, η = O(1) and W = O(1)
as β → 0, and the system (4.7) may be written as

z′
,β = Ãz′ + s̃, Ã=

∞∑
i=0

βiÃi , s̃ =

∞∑
i=0

βi s̃i . (5.23)

Thus β =0 is an ordinary point of the system (5.23), and solutions may be obtained
in a positive integer power series form. In this case, we apply the condition (5.15) at
β = 0 for Re(α) � 0 as discussed in § 5.2.

5.4. 1/2 <ν < 1

5.4.1. Chapman–Jouguet f = 1

For depletion orders in the range 1/2 < ν < 1 and for Chapman–Jouguet waves,
η = O(β) and W =O(β2ν−1), and the system (4.7) may be expanded in the form

β2ν z′
,β = Ãz′ + β2ν−1 s̃, Ã ∼ Ã0 + β2ν−1Ã1 + βÃ2, s̃ ∼ s̃0 + β s̃1, (5.24)

as β → 0. Thus β = 0 is an irregular singular point of (5.24). The homogeneous
solutions have the asymptotic form

z′
hi = r0i + O(β2ν−1, β2−2ν), i = 1, 2, 3,

z′
h4 = β2ν−1(r04 + O(β2ν−1, β2−2ν)),

z′
h5 = 1

β
eλ5/β

2ν−1

(r05 + O(β2ν−1, β2−2ν)),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.25)

where

r01 = [1, 0, 0, 0, 0]T , r02 = [0, 1, 0, −1, 0]T , r03 =

[
0, 1,

2α

iku0

, 1, 0

]T

,

r04 = [0, 0, 0, 0, 1]T , r05 = [−1, 1, 0, 1, 0]T .

(5.26)

The size of the correction terms in (5.25) depend on whether 1/2 < ν < 3/4, or
3/4 <ν < 1. A particular integral is

z′
p = β2ν−1([−u1W̃0/u0, u1W̃0/u0, 0, u1W̃0/u0, , 0]T + O(β2ν−1, β2−2ν)). (5.27)

The eigenvalue λ5 is given by

λ5 = 2αu2
0/W̃0η̃0(2ν − 1), (5.28)

so that Re(λ5) > 0 when Re(α) > 0. Consequently, for unstable modes, with Re(α) > 0,

the mode z′
h5 is spatially unbounded as β → 0. For Re(α) = 0, the mode z′

h5 remains
spatially unbounded as β → 0, but algebraically so. The modes z′

hi, i = 1..4, remain
bounded for Re(α) � 0, but in this case modes z′

hi, i = 1..3, limit to finite amplitudes
as β → 0, whereas z′

h4 vanishes. Eliminating the mode z′
h5 by setting C5 = 0 in (5.8)
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results in the leading-order compatibility relation

u′ + p′ − iku0

α
w′ + O(β2ν−1, β2−2ν) = 0, (5.29)

between the components of z′, that ensures only spatially bounded solutions exist as
β → 0. In this case, it is of interest to write the O(β2ν−1) correction terms explicitly
for 1/2 <ν < 3/4, so that (5.29) becomes

u′ + p′ − iku0

α
w′ + β2ν−1

[
W̃0u1

αu0

(
v′ − 2α

+
(3 − γ )

2
u′ +

(γ − 1)

2
p′ + ik

(γ + 1)

2α
u0w

′
)]

+ o(β2ν−1) = 0. (5.30)

As ν → 1/2, the correction terms increase in importance, enabling a smooth matching
with the boundedness condition for ν =1/2 (5.22).

5.4.2. Overdriven f > 1

For the overdriven case with a depletion order in the range 1/2 <ν < 1, η = O(1)
and W = O(β2ν−1), and the system (4.7) may be expanded as

β z′
,β = Ãz′ + β s̃, Ã ∼ Ã0 + β2−2νÃ1 + βÃ2, s̃ ∼ s̃0 + β s̃1. (5.31)

Nominally it appears that β = 0 is a regular singular point of (5.31). However, the
homogeneous solutions take the form

z′
hi ∼ r0i + O(β2−2ν), i = 1, 2, 3, 4; z′

h5 ∼ r05β
2ν−1 + O(β), (5.32)

where

r01 = [1, 0, 0, 0, 0]T , r02 = [0, 1, 0, 0, 0]T , r03 = [0, 0, 1, 0, 0]T ,

r04 = [0, 0, 0, 1, 0]T , r05 = [0, 0, 0, 0, 1]T .

⎫⎬⎭ (5.33)

A particular integral can be obtained in the form

z′
p = β

(
[0, 0, 0, 0, α/u0]

T /(2 − 2ν) + O(β2ν−1,2−2ν)
)
. (5.34)

Thus all the solution components are in fact spatially bounded as β → 0, and thus
the apparent singularity in (5.31) was removable. In this case, we again apply the
condition (5.15) at β = 0 for Re(α) � 0.

5.5. ν = 1

5.5.1. Chapman–Jouguet f = 1

For simple depletion (ν = 1) and Chapman–Jouguet waves (f = 1), η = O(β),
W = O(β), and the system (4.7) may be expanded in the form

β2z′
β = Ãz′ + β s̃, Ã =

∞∑
i=0

βiÃi , s̃ =

∞∑
i=0

βi s̃i , (5.35)
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as β → 0. Thus β = 0 is an irregular singular point of (5.35). The homogeneous
solutions take the asymptotic form

z′
h1 ∼ β−α/W̃0 (r01 + O(β)) + c1β

1−α/W̃0 log β (r11 + O(β)) ,

z′
h2 ∼ βλ1 (r02 + O(β)),

z′
h3 ∼ β−α/W̃0 (r03 + O(β)) + c2β

1−α/W̃0 log β (r13 + O(β)) ,

z′
h4 ∼ β1−α/W̃0 (r04 + O(β)), z′

h5 ∼ βdeλ2/β(r05 + O(β)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.36)

as β → 0, where the right eigenvectors are

r01 = [1, 0, 0, 0, 0]T , r02 = [a + b, a − b, 2iαb/u0k, −a − b, 0]T ,

r03 = [0, 1, −iα/u0k, 0, 0]T, r04 = r11 = r13 = [0, 0, 0, 0, 1]T, r05 = [1, −1, 0, −1, 0]T,

(5.37)

with

a = −α/W̃0, b = −u2
0k

2/2α, c1 = θ/u2
0p0, c2 = −1/u0,

d = −1 +
4α2u0W̃1 − W̃0u1(α

2(3 − γ ) − k2u2
0(γ + 1))

2(γ + 1)u1W̃
2
0 α

.

⎫⎪⎪⎬⎪⎪⎭ (5.38)

A particular integral can be found in the form

z′
p = β[−u1W̃0/u0, u1W̃0/u0, 0, u1W̃0/u0, , 0]T + O(β2). (5.39)

The eigenvalues λ1 and λ2 are given by

λ1 = −
(
α2 + u2

0k
2
)
/2αW̃0, λ2 = 2αu2

0/W̃0η̃0, (5.40)

so that for Re(α) > 0, Re(λ1) > 0 and Re(λ2) > 0. For Re(α) = 0, Re(d) < 0, and
consequently only the mode z′

h5 is unbounded as β → 0 for Re(α) � 0. Modes z′
hi,

i = 1..4, all vanish as β → 0 for Re(α) > 0, while modes z′
h1 and z′

h3 remain finite as
β → 0 for Re(α) = 0. Upon elimination of the mode z′

h5, by setting C5 = 0 in (5.8), we
arrive at the compatibility condition

u′ + p′ − iku0

α
w′ + O(β log β−1) = 0, (5.41)

that ensures spatially bounded eigenfunction solutions as β → 0.

5.5.2. Overdriven f > 1

For simple depletion, ν = 1, and overdriven waves, η = O(1) and W = O(β). The
system (4.7) can then be expanded as

β z′
β = Ãz′ + β s̃, Ã =

∞∑
i=0

βiÃi , s̃ =

∞∑
i=0

βi s̃i , (5.42)
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as β → 0. Thus β = 0 is a regular singular point of (5.42). The homogeneous solutions
take the form

z′
h1 = β−α/W̃0 (r01 + O(β)) + c1β

1−α/W̃0 log β (r11 + O(β)) ,

z′
h2 = β−α/W̃0 (r02 + O(β)) + c2β

1−α/W̃0 log β (r12 + O(β)) ,

z′
h3 =β1−α/W̃0 (r03 + O(β)), z′

hi ∼ r0iβ
λi + O(β), i = 4, 5,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.43)

as β → 0, where the right eigenvectors r01, r02 and r03 are

r01 = [1, 0, 0, 0, 0]T , r03 = r11 = r12 = [0, 0, 0, 0, 1]T , r02 = [0, 1, −iα/u0k, 0, 0]T ,

(5.44)

and where the eigenvectors r04 and r05, and the constants c1 and c2, can be obtained
in terms of the ZND state. A particular integral can be found in the form

z′
p = β[0, 0, 0, 0, W̃0/u0]

T + O(β2). (5.45)

The eigenvalues λ4 and λ5 are given by

λ4 = − u0α

η0W̃0

(u0 + c0ω), λ5 = − u0α

η0W̃0

(u0 − c0ω), ω =
√

1 − η0k2/α2, (5.46)

so that for Re(α) > 0, Re(λ4) > 0 and Re(λ5) < 0. Consequently only the mode z′
h5 is

unbounded at β = 0 for Re(α) > 0. Upon elimination of this mode, we arrive at the
compatibility condition

u′ − u0ω

c0

p′ − iku0

α
v′ + O(β log β−1) = 0, (5.47)

that ensures spatially bounded eigenfunction solutions as β → 0 for Re(α) > 0. Modes
z′
hi, i = 1..4, again all vanish as β → 0 for Re(α) > 0. For Re(α) = 0, the mode z′

h5

is now spatially bounded along with the modes z′
hi, i = 1..4, and no boundedness

condition can be applied. For consistency, we impose the radiation condition (5.15)
that eliminates upstream propagating waves at the point β = 0.

5.6. Boundedness conditions for Chapman–Jouguet waves revisited

Further insights into the origin of the single spatially unbounded mode found for
Chapman–Jouguet waves can be obtained by extracting from the system (2.1)–(2.8)
an equation which describes any forward travelling plane wave in the x-direction
(Roe 1998). When specialized to the shock frame (4.1), this is

p,t + (u + c)p,x + cρ(u,t + (u + c)u,x) = Ψ,t (p,x + cρu,x) − cρw(u,z − Ψ,zu,x)

− w(p,z − Ψ,zp,x) − c2ρ(w,z − Ψ,zw,x) − 2(γ − 1)βρQW. (5.48)

Linearizing according to (4.3) and (4.5) and employing the coordinate transformation
(4.6) gives, at O(ε),

W
(
1 +

c

u

)
(p′

,β + cρu′
,β) = −α(p′ + cρu′) − W

u
(u′ + c′ − α)(p,β + cρu,β)

− (c′ρ + ρ ′c)
(
1 +

c

u

)
Wu,β − ikc2ρw′ − 2(γ − 1)QW (β ′ρ + βρ ′)

− 2(γ − 1)βρQ(W,pp′ + W,vv
′ + W,ββ

′), (5.49)
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which describes the behaviour of the perturbations along any forward acoustic
characteristic defined by the steady wave solution when 0 � β � 1. Note that the
coefficient of the derivative term on the left-hand side of (5.49) vanishes for the Chap-
man–Jouguet wave since c → −u as β → 0. It is easy to demonstrate, from the solutions
developed in § 5.3.1, § 5.4.1 and § 5.5.1, that the left-hand side of (5.49) vanishes for
each of the spatially bounded modes (i.e. those in (5.17), (5.25) and (5.36)). It is also
easy to demonstrate that the single unbounded mode calculated in each of (5.17),
(5.25) and (5.36) as β → 0 has its origin in the vanishing of the coefficient on the
left-hand side of (5.49). Thus, given our prior knowledge of the spatial structure of the
modal solutions determined in § 5.3.1, § 5.4.1 and § 5.5.1, the boundedness condition
for each case could be simply derived by setting the left-hand side of (5.49) to zero
as β → 0, where u → −c. This gives, to leading-order,

p′ + u′ − iku0

α
w′ − 2Q(γ − 1)

W̃0

αu0

β ′ +
W̃0u,β

αu0

(v′ + γp′ + 2(u′ − α)) = 0, (5.50)

which coincides with the leading-order conditions (5.22), (5.29) and (5.41) for the
appropriate ν in the range 1/2 � ν � 1. Comments regarding the appropriateness of
linearization of the flow equations around a sonic flow point are given in § 6.

5.7. Evaluation of α

The eigenvalue α, for a given parameter set, is formally obtained by the integral solu-
tion of (4.7) that satisfies the shock conditions (4.11) at β = 1 and, depending on the
parameter values of f and ν, one of the above boundedness conditions (or radiation
condition in the case of f > 1, 1/2 � ν � 1, Re(α) = 0) as β → 0. In practice, this is done
by a shooting algorithm, similar, for example, to that described in Short & Stewart
(1998). For the calculations shown in § 6, the leading-order boundedness conditions
are typically applied at β = 10−7. For this small value of β, further decreases in β are
found to not change α at the accuracy calculated for the present paper (see tables 1
and 2). To summarize, the boundedness condition for f = 1, ν = 1/2, is given by (5.22),

provided Re(α) > −(1 − δ)W̃0/2u0( < 0); by (5.29) for f =1, 1/2 <ν < 1, provided
Re(α) � 0; by (5.41) for f = 1, ν = 1, provided Re(α) � 0; by (5.47) for f > 1, ν = 1,

provided Re(α) > 0; and by (5.15) for f > 1, 1/2 � ν < 1 for Re(α) > 0. The radiation
condition that is applied for f > 1, 1/2 � ν � 1 for Re(α) = 0 is given by (5.15).

6. Additional comments on the linear stability analysis
6.1. Influence of the transonic layer for Chapman–Jouguet waves

In this section, we address questions concerning the validity of the linearization of
unsteady flow perturbations in a transonic flow region for the case of Chapman–
Jouguet detonations. First, we recall the premise behind our analysis: this involves
an O(ε) perturbation uniformly applied to the steady detonation structure (4.3).
Secondly, we recognize that the structure of a CJ detonation can be characterized by
two smoothly merging flow regimes: a main reaction layer (or MRL), where most of
heat is released, and a transonic layer (or TSL), where the flow is near-sonic (Klein
1991). The main reaction layer is defined as the region where β = O(1), while, for
reasons noted below, the transonic layer is defined as the region where β = O(ε).
The potential problem with the linear approximation lies with the long-time shape
of the upstream acoustic wave characteristic paths initially in the region β = O(ε).
For example, the upstream characteristic through β = 0, i.e. through the steady sonic
point, remains at β =0 in the linear approximation. In practice, we should expect
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that accumulative nonlinear effects on an appropriately defined time scale in the
transonic layer will modify the shape of the characteristics in the region β = O(ε)
by an O(ε) amount. We will now obtain the time scale for the breakdown of the
linear approximation in the transonic layer, and discuss the implications for a linear
stability analysis.

The time scales that characterize the unsteady evolution in the transonic and main
reaction layers can be extracted from a scaling argument similar to that given in Klein
(1991) and Bdzil et al. (2006) (upon omitting the curvature terms). The characteristic
width of the two regions is defined by the distance a reacting particle would travel
in each region over the change in reactant mass fraction. Since the main reaction
layer is the region defined for β = O(1), the fluid velocity (3.1) is O(1) based on the
dimensional scales defined in § 2, while the reaction rate W = O(1), the characteristic
MRL length scale is

lMRL =O

(
β

W
u

)
= O(1). (6.1)

Consequently, given that the three characteristic (particle u, upstream u + c, and
downstream acoustic u − c) velocities are O(1) as defined by the scales in § 2, the
MRL time scale is

tMRL = O(1). (6.2)

Thus, it is important to recognize that the time scale t associated with the linearization
(4.3) is that of the characteristic time scale of the evolution of disturbances in
the main reaction layer. For the transonic layer, an examination of (5.48) shows
that an O(ε) disturbance has the ability to influence the leading-order path of the
upstream, near-sonic characteristics in a region where β = O(ε). This is the region
we define as the transonic layer. Since the flow velocity in the TSL is O(1) through
(5.1), while W = O(ε2ν−1) (see (5.7)), the characteristic length scale of the transonic
layer is

lTSL =O

(
β

W
u

)
= O(ε2−2ν). (6.3)

In the TSL, both the flow velocity u and downstream acoustic wave speed u − c are
O(1). Thus the time scale associated with the movement of these two wave families
through the transonic layer is then O(ε2−2ν). On the other hand, in the region where
β = O(ε), the upstream acoustic wave speed in the TSL is u + c = O(ε). Thus the
time scale associated with the motion of forward acoustic wave disturbances through
the transonic layer is

tTSL = O(ε1−2ν). (6.4)

It is the nonlinear TSL evolution on the time scale tTSL that is relevant to our
problem.

The relevant length and time scales in the MRL and TSL can now be compared for
a reaction order in the range 1/2 � ν � 1. We first note that tTSL/tMRL =O(ε1−2ν), so that
tTSL/tMRL 
 1 for a reaction order in the range 1/2< ν � 1, while tTSL/tMRL = O(1) for
ν = 1/2. For the length scales, lTSL/lMRL =O(ε2−2ν), so that lTSL/lMRL � 1 for 1/2 � ν < 1,

while lTSL/lMRL =O(1) for ν = 1. Consequently, a formal analysis of the transonic layer
evolution would require introduction of the scales

t̂ = ε2ν−1t, x̂ = ε2ν−2x, β̂ = ε−1β, (6.5)

combined with the perturbation expansion (4.3). The nonlinear evolution along
the forward characteristic in the TSL can be obtained from (5.48) and is defined
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by

p̄,t̂ + ū,t̂ +

(
β̂

2
+ ū + c̄

)[
p̄,x̂ + ū,x̂ − 2

W̃0

γ
β̂2ν−1

]
= −W̃0

γ
β̂2ν−1[β̂ + (2ν − 1)β̄]

+ ε2ν−1Ψ̄ ,t̂

[
p̄,x̂ + ū,x̂ − 2

W̃0

γ
β̂2ν−1

]
− ε2−2ν γ

(γ + 1)

[
w̄,z

ε
− ε2ν−2Ψ̄ ,zw̄,x̂

]
− ε2−2νw̄

[
p̄,z + ū,z − Ψ̄ ,zε

2ν−1

(
p̄,x̂ + ū,x̂ − 2

W̃0

γ
β̂2ν−1

)]
. (6.6)

Several comments can now be made regarding the role of the transonic layer in
the linear stability analysis. For a reaction order in the range 1/2 < ν � 1, tTSL 
 tMRL

for ε � 1, i.e. the defining disturbance evolution time in the transonic layer is much
greater than that in the main reaction layer. Thus, on the shorter main reaction
layer time scale, the linear analysis described in § 4 and § 5 for f = 1 is valid for the
transonic layer β = O(ε). In particular, this implies that if the detonation is unstable
(Re(α) > 0) on the MRL time scale, as for the cases shown in § 7, the TSL cannot
influence this outcome. The only potential source of difficulty occurs for square-root
depletion, ν =1/2, where tTSL = O(tMRL). For the MRL region O(ε) <β � 1, ε → 0,

the linear analysis in § 4 and § 5 remains valid. In particular, the spatial growth of

the mode z′
h5 (5.17) is unbounded (z′

h5 ∼ r05β
λ5, λ5 = −1 − 2αu0/(1 − δ)W̃0) as β → 0.

Based on the analysis in Klein (1991) and Bdzil et al. (2006), we surmise that an
O(ε) disturbance in the nonlinear TSL (where β = O(ε)) cannot be matched to the
unbounded spatial growth of the eigenfunction z′

h5 in the MRL. Consequently, the
boundedness condition (5.22) must still be applied at the end of the MRL, where
β = O(ε), making the disturbances uniformly of size O(ε) at the end of MRL. Most
importantly, this condition completely isolates the linear evolution of the MRL from
the TSL, so that the influence of the TSL on the MRL will be o(ε) as in Klein (1991)
and Bdzil et al. (2006). In short, for ν = 1/2, the TSL dynamics does not affect the
linear evolution of the MRL region, and so the linear stability analysis described in § 4
and § 5 remains valid. The outstanding agreement between the numerical simulations
shown in § 7 and the linear stability theory justifies this argument.

6.2. Decay dynamics of linearly perturbed stable waves

In the linear analysis described in § 4–5, and the calculations presented in § 7, we
have only been concerned with the calculation of either neutrally stable Re(α) = 0,

or unstable, Re(α) > 0, modal solutions of the exponential form (4.5). The possible
existence and decay rate of modal solutions of the form (4.5) with Re(α) < 0 has
not been explicitly studied. In many cases, problematic issues arise and these are
highlighted below.

Modal solutions of the form (4.5) are only valid for Re(α) < 0 if they remain
spatially bounded, i.e. if either the asymptotic solution (5.8) as β → 0 or solution
(5.13) as x → −∞ is spatially bounded, depending on the value of f and ν. This is
the situation for Re(α) � 0 that has already been studied. We now return to each of
the cases studied in § 5, and re-examine the spatial behaviour of the solution (5.8)
or (5.13) for Re(α) < 0. Before proceeding, we note that for Re(α) < 0, the particular
solution z′

p in (5.8) is always spatially bounded (§ 5.3–5.5), and thus only the spatial
behaviour of the homogeneous terms needs to be considered.

For f =1 and ν = 1 (§ 5.5.1), we have that for Re(α) < 0, Re(λ1) < 0 and Re(λ2) < 0.

Thus the modes z′
hi, i = 1..3, are unbounded as β → 0 for Re(α) < 0, while the

mode z′
h4 is unbounded for Re(α) < W̃0(<0). Only the mode z′

h5 is bounded for
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Re(α) < 0. Consequently, there will be a minimum of three modes that are spatially
unbounded for Re(α) < 0. A spatially bounded form of (5.8) would then require
having C1, C2, C3 and possibly C4 in (5.8) all be zero for a given eigenvalue α.

This presents an overdetermined problem for α, since only one of the coefficients Ci

can be eliminated for any one value of α. For ν = 1 and f > 1 (§ 5.5.2), we have for
Re(α) < 0, Re(λ4) < 0, while Re(λ5) > 0. Consequently, z′

h1, z′
h2 and z′

h4 are all spatially

unbounded for Re(α) < 0 as β → 0, z′
h3 is unbounded for Re(α) < W̃0, while z′

h5 is
bounded for Re(α) < 0. As above, all of the Ci, i = 1, 2, 4, and possibly C3 would
need to be set to zero for (5.8) to have bounded solutions, which again represents an
overdetermined system for the eigenvalue α. Consequently for f � 1, ν = 1, as also
noted by Sharpe (1997), it appears that formally there are no modal solutions of the
form (4.5) with Re(α) < 0 that remain spatially bounded as β → 0.

It should be noted, however, that attempts have been made to compare the temporal
decay behaviour of a perturbed stable detonation under the idealized gas phase model
with f � 1 and ν = 1, calculated via a direct numerical simulation of (2.1)–(2.4), with
an exponential modal solution of the form (4.5) (Bourlioux, et al. 1991a; Short &
Blythe 2002). The boundary condition that has been applied in the linear stability
analysis for Re(α) < 0 in these studies is that of no incoming acoustic modes as β → 0,

i.e. a radiation condition that equivalently sets C5 = 0 in (5.8) for f � 1 and ν = 1.

Formally, the structure (5.8) then must involve spatially unbounded modes as β → 0
(§ 5.5.1 and § 5.5.2). Nevertheless, the agreement between the Re(α) < 0 exponential
decay rate evaluated from the linear analysis and that fitted to apparent exponentially
decaying shock perturbation amplitudes identified in the numerical simulations was
found to be excellent. One plausible explanation for this has been given by Short &
Blythe (2002); the simulations are typically conducted on a finite, not infinite, domain,
with a non-reflecting boundary condition applied downstream of the detonation.
Formally, this prevents acoustic disturbances entering the numerical domain from
downstream of the detonation, which is effectively the boundary condition applied
in the linear analysis. That said, as pointed out by Bourlioux, Majda & Roytburd
(1991b), the interpretation of α as an eigenvalue is problematic due to the unbounded
spatial growth that formally exists as β → 0 in the modal solutions (4.5).

For f > 1 and 1/2 � ν < 1, the spatial behaviour of the eigenfunction solutions
in the uniform subsonic region downstream of the detonation reaction zone is
given by (5.13). For Re(α) < 0, Re(λ1) > 0, but Re(λi) < 0, i = 1..3. Thus only the
mode corresponding to r1 in (5.13), i.e. that associated with upstream acoustic wave
propagation, is spatially bounded as x → −∞, while the other three that are associated
with downstream acoustic wave propagation, entropy and vorticity variations are
spatially unbounded. Consequently, it again appears that formally there are no modal
solutions of the form (4.5) with Re(α) < 0 that remain spatially bounded as x → −∞.

In their analysis of overdriven detonations, Clavin et al. (1997) and Daou & Clavin
(2003) choose α, with Re(α) < 0, to suppress the downstream propagating acoustic
mode. This equates to setting C2 = 0 in (5.13), thereby assuring that the acoustic
pressure mode is bounded. However, this is also problematic as it leaves the ρ ′

a, u′
a

and w′
a modes spatially unbounded as x → −∞.

For f = 1 and 1/2 < ν < 1 (§ 5.4.1), we have that Re(λ5) < 0 for Re(α) < 0. In contrast
to the cases discussed above, now all the modes z′

hi, i = 1..5, are spatially bounded
as β → 0 for Re(α) < 0. Since the main reaction layer perturbation solutions through
(5.25) are spatially bounded, the question of the existence of exponential modal
solutions of the form (4.5) would require an examination of perturbations in the
attached transonic flow zone for β = O(ε), utilizing the scales identified in § 6.1. We
do not pursue such an analysis here. The final case we need to examine occurs for f =1
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Figure 5. (a) Neutral stability boundaries in the n−k plane for k < 2 with f = 1 when ν = 1/2
(dotted), ν = 2/3 (dashed) and ν = 1 (solid). Only the part for n< 3 is calculated for ν =1 due
to numerical stiffness difficulties in calculating the larger-n cases. The circles mark the point of
two-dimensional neutral stability in the (n, k) plane for each ν. (b) Corresponding frequency
variation along the neutral stability boundaries over the extent shown in (a).

and ν = 1/2 (§ 5.3.1). In this case, Re(λ5) < 0 for Re(α) > −(1 − δ)W̃0/2u0( < 0) = Kp.

Thus for Re(α) < Kp, all modes z′
hi, i =1..5, are spatially bounded, as above. However,

for Kp <Re(α) < 0, Re(λ5) < 0, and thus the mode z′
h5 is spatially unbounded while

modes z′
hi, i =1..4, are spatially bounded. Eliminating the single unbounded mode

z′
h5 as β → 0 leads to the boundedness condition (5.22) for Kp < Re(α) < 0. This is the

only case for f � 1 and 1/2 � ν � 1 for which the calculation of stable modal solutions
of the exponential form (4.5) is not potentially problematic. A similar situation also
arises in the study of the stability of pathological detonations (Sharpe 1999). It
remains to suggest that for f = 1, 1/2 < ν � 1, and f > 1, 1/2 � ν � 1, the precise
form of the damping behaviour of linearly perturbed detonations, and clarification
on the existence of modal solutions of the form (4.5), can likely be obtained through a
method of characteristics approach such as that examined for inert step-shock waves
(Roberts 1945).

7. Linear stability of detonations for the idealized condensed-phase model
In the following, solutions of the above linear stability formulation for ZND

detonations described by the idealized condensed-phase model are presented. Thus,
unless noted otherwise, the parameter values θ = 0, δ = 0 and γ =3 will be assumed.

Figure 5 shows the neutral stability boundaries for two-dimensional perturbations
to a CJ detonation in the wavenumber k and pressure sensitivity n space for three
values of the depletion order ν = 1/2, ν =2/3 and ν = 1. For all the CJ detonation
parameter sets that have been studied, only a single unstable mode has been identified,
and thus each of the boundaries shown in figure 5(a) is the neutral stability curve for
that mode. This in contrast to our usual experience with the stability characteristics of
ZND detonations defined by the idealized gas phase model, where, for example, the
boundary defining detonation stability to two-dimensional disturbances in activation
energy–wavenumber space is typically defined by the presence of fundamental and
higher harmonic modes (e.g. Short & Stewart 1998). For one-dimensional disturbances,
the CJ detonation is unstable for n> 5.904 when ν = 1/2 (αi = 0.0629), for n> 7.397
when ν =2/3 (αi = 0.0774), and for n> 10.151 when ν =1 (αi =0.1204). For a value
of n less than the one-dimensional neutral stability point for a given ν, there is a finite



Condensed-phase detonation stability 69

(a) (b)

0.5 1.0 1.5 2.0 2.5 3.0
 k 

0

0.002

0.004

0.006

0.008

0.010

R
e(

α
)

Im
(α

)

0.5 1.0 1.5 2.0 2.5 3.0
 k 

0

0.5

1.0

1.5

2.0

Figure 6. Variation of (a) the growth rate Re(α) and (b) the frequency Im(α) of the unstable
CJ mode with k for f = 1, ν = 1/2 and n= 2.2 (dotted), n= 2.4 (solid).

band of wavenumbers for which the detonation is unstable to transverse disturbances.
The two-dimensional CJ detonation neutral stability points occur at n= 2.168 when
ν = 1/2 (where k = 0.851, αi = 0.592), at n= 2.267 when ν = 2/3 (where k = 1.152,

αi = 0.803), and at n= 2.424 when ν = 1 (where k = 1.855, αi = 1.296). Thus decreasing
the reaction order ν tends to render the ZND detonation less stable, i.e. a lower value
of the pressure sensitivity exponent n is required for instability. Of particular note is
that for n slightly larger than the two-dimensional neutral stability point, the band
of wavenumbers for which the detonation is unstable increases rapidly. For example,
when ν = 1/2 and n= 2.2, this band of wavenumbers is given by 0.578 <k < 1.320,

whereas for n= 2.4 the band is given by 0.325 < k < 3.018. The growth rates and
frequencies associated with the unstable mode when ν =1/2 for n= 2.2 and n = 2.4
are shown in figure 6. For n=2.4, the maximum growth rate αr = 0.00915 occurs
at k =1.134 where αi = 0.791, which translates to an initial detonation cell width
Cw = 5.54 and cell length CL = 7.94. Thus the initial detonation cell spacing and
length are both comparable to, but smaller than, the total length LZND = 8.1 (i.e.
shock to final point) of the underlying ZND wave. From a practical viewpoint, when
the idealized condensed-phase detonation model is used to model real explosives, such
as liquid nitromethane or solid PBX-9501, a choice of ν = 1/2 and a pressure sensitivity
in the range n= 1 − 3 is normally taken (Bdzil et al. 2003). In this case, a planar CJ
detonation would only be stable to multi-dimensional disturbances when the pressure
sensitivity n< 2.168. We should also point out that the location of the neutral stability
boundary calculated for ν → 1/2 using (5.29) limits smoothly to that calculated for
ν = 1.2 using (5.22). As noted above, the additional leading-order terms appearing in
(5.22) are a simple manifestation of the change in steady structure as ν → 1/2, where
u,x and W are O(β2ν−1) as β → 0. Thus, for any ν > 1/2, both u,x and W are o(1) as
β → 0, but remain O(1) for ν = 1/2. However, the transition between (5.22) and (5.29)
as ν → 1/2 is a smooth continuous one (see (5.30)), and consequently, we should not
expect any discontinuity in the stability spectra between ν =1/2 and ν → 1/2. This
has been verified through a series of calculations that are not shown here.

As noted above, although γ = 3 is a good choice for most liquid and solid explosives
under the equation of state assumption (2.2), it is nevertheless of interest to examine
the variation in the ZND neutral stability boundaries that occur in response to a
change in γ. For a CJ detonation, the effect of increasing γ is to decrease the shock
pressure, consequently reducing the magnitude of the reaction rate at the shock.
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Figure 7. (a) Neutral stability boundaries in the n − k plane for k < 3 with f = 1 &
ν = 1/2 when γ = 2 (solid), γ =3 (dotted) and γ =4 (dashed). The circles mark the point
of two-dimensional neutral stability in the (n, k) plane. (b) Corresponding frequency variation
along the neutral stability boundaries over the extent shown in (a).
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Figure 8. (a) Neutral stability boundaries in the n − f plane for one-dimensional modes
of different frequency identified for ν = 1/2. Modes 1 (dashed), 2 (dotted) and 3 (dash-dot)
are shown. The circle indicates the single point of neutral stability present for f =1. The
corresponding frequency variation along the extent of the neutral stability boundaries shown
in (a) is given in (b).

Figure 7 shows the two-dimensional neutral stability boundaries for a CJ detonation
with ν = 1/2 when γ = 2, γ = 3 and γ = 4. There is a finite band of wavenumbers for
which the CJ detonation is unstable for n> 1.335 when γ = 2, n > 2.168 when γ = 3,

and n > 2.516 when γ =4. Thus, within the confines of the idealized condensed-phase
model, a detonation in a liquid or solid explosive is rendered more stable by increasing
γ. Similar to the behaviour found for γ = 3, it can be seen that for both γ =2 and
γ =4, small increases in n above the value for neutral stability results in a rapid
increase in the range of wavenumbers that render the ZND detonation unstable.

Figure 8(a) shows the one-dimensional neutral stability boundaries in pressure
sensitivity (n) and overdrive (f ) space for three modes that are unstable for f > 1 and
ν =1/2. The modes are labelled by the sequence in which they become unstable as
n is increased for the range of f shown, i.e. for f < 1.2. For f = 1.2, the detonation
becomes unstable to a single mode (mode 1) at n= 4.675, and this is the only mode
that is unstable for 4.675 < n < 6. The behaviour beyond n= 6 was not calculated. For
f = 1.05, mode 1 becomes unstable at n= 4.173, a second mode (mode 2) becomes
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Figure 9. (a) Neutral stability boundaries in the n − k plane for f = 1.05 and ν = 1/2, for the
first three unstable modes identified for k = 0. (b) Continuation of the second mode for larger
k. Also shown is the neutral stability boundary for f = 1 and ν = 1/2 (solid line).

unstable at n= 4.976, and a third mode (mode 3) becomes unstable at n= 5.714. The
corresponding frequencies of each of the modes along the neutral stability boundaries
for the ranges shown in figure 8(a) are shown in figure 8(b). Of particular interest,
though, is the behaviour of the neutral stability boundaries for each of the modes 1–3
as f is decreased. Concentrating first on mode 1, this mode becomes unstable for
smaller values of n as f is first decreased from f = 1.2, in common with the known
stability trends of the idealized gas phase model, i.e. decreasing overdrive tends to
destabilize a detonation. However, beginning with the turning point at f = 1.056 and
n= 4.170, the mode now becomes unstable for progressively increasing values of n as
f is decreased further. Even more interesting is that the boundary does not intersect
the f = 1 line, i.e. this mode is not unstable for CJ detonations, but rather reaches a
minimum at f =1.017 when n= 5.422. All the neutral stability boundaries associated
with modes 1–3 have a similar structural behaviour. The complex behaviour that
occurs close to f = 1 associated with the bunching of multiple modes in the region
f − 1 � 1, that is apparent in figure 8(a), will be detailed in a future article. In
summary, for CJ detonations and ν =1/2, the neutral stability point occurs when
n= 5.904, while figure 8(a) shows that the detonation is more unstable as the overdrive
is increased away from f =1. In fact, for ν = 1/2, the ZND detonation first becomes
unstable to one-dimensional disturbances for f = 1.056 when n= 4.170. This stability
characteristic was also observed in the context of pathological detonations (Sharpe
1999). It is in contrast to the observed linear stability behaviour of ZND detonations
in the idealized gas phase model, for which increasing overdrive tends to have a
stabilizing effect. We also note that similar behaviour to that shown in figure 8 for
ν = 1/2 also occurs for ν > 1/2.

Figure 9(a) shows the two-dimensional neutral stability boundaries traced out in the
(n, k) plane by modes 1–3 for ν = 1/2 and f = 1.05. For mode 1 and n> 2.213, there is
a finite band of wavenumbers which renders the overdriven detonation unstable. The
largest wavenumber for which the detonation is unstable to mode 1 is k = 0.240 and
occurs when n= 2.397. A similar behaviour is observed for mode 3. The behaviour
for mode 2 is different. The neutral stability boundary for mode 2 for 0 <k < 0.3 is
shown in figure 9(a), and for 0.3 <k < 3 in figure 9(b). Also shown in figure 9(b) is
the two-dimensional neutral stability for the CJ (f = 1) detonation. For k > 0.3, the
neutral stability boundary for mode 2 with f = 1.05 oscillates close to that for f = 1.
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It can also be seen that for sufficiently low n there will, in general, be several distinct
regions of wavenumbers where Re(α) > 0.

8. Comparison with numerical solutions: linear growth
Some comparisons between the growth rates of unstable one- and two-dimensionally

perturbed ZND detonations calculated by the normal-mode analysis and those
calculated from a direct numerical integration (DNI) of the reactive Euler system
(2.1)–(2.4) for early times are shown below. The simulations were conducted using
a new, high-order, shock-attached solution methodology described by Henrick et al.
(2006) for one-dimensional evolutions and by Henrick (2007) for two-dimensional
systems. For one-dimensional systems, the technique uses a shock-fitting strategy
involving a shock-attached coordinate system. In this approach, equations (2.1)–(2.4)
are solved with a method of lines formulation, employing a fifth-order Runge–
Kutta temporal integration with a fifth-order mapped weighted essentially non-
oscillatory (WENO) spatial scheme. Except at the shock grid point, the scheme is
fully conservative. The motion of the shock is determined from an equation for
the shock acceleration, given as a function of the momentum flux gradient at the
shock. All other variables at the shock are then calculated in turn as functions
of the shock speed through the standard shock jump conditions. At the shock,
and the adjacent 2 points, special biased stencils are used to calculate flux gradi-
ents. The shock-attached strategy for two-dimensional systems is described by Henrick
(2007). The shock-attached solution methodology offers some favourable advantages
over standard shock-capturing algorithms for accurately capturing the evolution
of unstable detonations, especially for the idealized condensed-phase model. In
particular, it avoids shock ‘clipping’, which can dramatically affect the reaction
rate W at the shock. In certain cases, the shock-capturing strategies can lead to
inaccurate predictions of stability boundaries for the idealized condensed-phase model.
A demonstration of this numerical issue will be presented in a future article.

All the calculations shown below were performed on a uniform spatial grid, and
the resolution in each case is indicated by the number of points (pts) per half-reaction
length (hrl) that are placed in the initial ZND wave. The initial conditions for the
DNI solutions consisted of the ZND detonation structure for a supported CJ or
overdriven detonation structure. A small-amplitude quadratic perturbation in the
reaction progress variable λ is added to the ZND structure, and the system allowed
to evolve in time.

8.1. One-dimensional evolution

Figure 10 shows the early-time evolution of the detonation shock speed Dn calculated
by DNI for f = 1, ν = 1/2 and for n= 5.95 and n= 6. Each shows a form of oscillatory,
exponential growth. The growth rates and frequencies of the evolution are extracted
by fitting a function of the form Dn = a0 +a1 exp(a2t) sin(a3t +a4) to the data shown in
figure 10. The results of this fitting are shown in table 1 for the two cases in figure 10
as well as for n= 5.906. Also shown in table 1 are the corresponding predictions
of the normal-mode analysis. In all cases, the agreement is excellent. Similarly good
agreement is obtained for moderately overdriven waves. Cases for ν = 1/2, f = 1.1,

n=4.28 and f = 1.05, n = 4.5 are shown in table 1.

8.2. Two-dimensional evolution

Table 2 shows a comparison between the growth rate of a two-dimensional unstable
detonation for f = 1, ν =1/2 and n= 2.4, characterized by a wavelength L = 6
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Figure 10. Evolution of the detonation front speed Dn for early time calculated by DNI for
f = 1, ν = 1/2, and (a) n= 5.95 and (b) n= 6. The grid resolution was 80 pts/hrl.

Normal-mode analysis DNI

f n Re(α) Im(α) growth rate frequency res.

1 5.906 0.0000503 0.062878 0.0000502 0.062877 80
1 5.95 0.0010547 0.062870 0.0010546 0.062867 80
1 6 0.0022082 0.062837 0.0022082 0.062834 80
1.1 4.28 0.0001348 0.087987 0.0001352 0.087981 40
1.05 4.5 0.0024044 0.063625 0.0024013 0.063624 40

Table 1. A comparison of the growth rates and frequencies of the unstable modes predicted
by the linear analysis and those calculated by high-resolution DNI. The resolution (points per
half-reaction length) used in the DNI is also shown.

Normal-mode analysis DNI

f n L Re(α) Im(α) growth rate frequency res.

1 2.4 6 0.00908726 0.731900 0.00908759 0.731917 80
1.05 2.4 6 0.00869689 0.730839 0.00882749 0.731175 10

0.00857121 0.730811 20
1.05 2.2 5.7 0.00152091 0.764230 0.00024641 0.763367 10

0.00076171 0.763886 20
0.00125331 0.764115 40

1.05 2.2 7.3 0.00244835 0.598937 0.00147256 0.598540 10
0.00210797 0.598732 20

Table 2. A comparison of the growth rates and frequencies of the unstable modes predicted by
the two-dimensional linear analysis and those calculated by high-resolution DNI for ν = 1/2
along z = 0 for a periodic channel 0 � z � L . The resolution (points per half-reaction length)
used in the DNI is also shown.

(wavenumber k = 2π/L = 1.0472) as calculated via the normal-mode analysis and
through a DNI using the shock-attached strategy outlined by Henrick (2007). The
normal-mode growth rate variation with wavenumber for this case is given in figure 6.
The direct numerical integration of the system (2.1)–(2.4) is carried in a channel of
width 0 � z � L with periodic boundary conditions applied along z = 0 and z =L.

The time evolution of the detonation shock velocity (Dn) along the boundary z = 0 is
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Figure 11. Evolution of the detonation front speed Dn for early time calculated by DNI along
z = 0 in a two-dimensional periodic channel for f =1, ν =1/2, n= 2.4 and L = 6. The grid
resolution was 80 pts/hrl.

given in figure 11. The agreement between the growth rates and frequencies extracted
from figures 6 and 11 and shown in table 2 is again excellent.

In addition, table 2 shows comparisons between a DNI of (2.1)–(2.4) and the
normal-mode solutions for three overdriven cases in a two-dimensional periodic
channel (0 � z � L). It should be noted that the resolution used in the overdriven
cases is lower than that typically employed for the Chapman–Jouguet simulations.
The overdriven detonation wave simulations are conducted on significantly larger
domains to prevent any numerically spurious reflections of disturbances from the
downstream outflow boundary over a given time span, which we have shown can
affect the linear evolution of the wave. For the case with f = 1.05, n = 2.4 and
L =6, the agreement between the growth rates and frequencies is excellent given
the 20 pts/hrl resolution. The two cases with f = 1.05, n= 2.2 and either L = 5.7 or
L =7.3 lie close to the two-dimensional neutral stability boundary (figure 9b). The
agreement between the frequencies is excellent. It is also satisfactory for the growth
rates, which are clearly converging towards the normal-mode results under increasing
resolution. In particular, the two cases for f = 1.05 and n= 2.2 with channel widths
of L = 5.7 and L =7.3 lie within two neighbouring unstable regions of the oscillatory
variation in the neutral stability boundary location (the locations of the two cases are
marked by the circles in figure 9b). Moreover, a DNI for f = 1.05, n= 2.2 and L = 6.5
(also marked by a circle in figure 9b) reveals that the detonation is linearly stable,
a confirmation of the validity of the unusual wavy variation shown in figure 9(b)
for f =1.05. In summary, we have demonstrated an excellent agreement between
the growth rates and frequencies of unstable disturbances obtained from a normal-
mode analysis and from a direct numerical integration for both Chapman–Jouguet
and overdriven systems with square-root depletion (ν = 1/2). Other cases we have
calculated for ν > 1/2 show similarly excellent agreement.

8.3. Stable evolution for ν = 1/2

It was noted in § 6.2 that stable modal solutions of the exponential form (4.5) can
formally exist for the case of ν =1/2 and f = 1. Figure 12(a) shows the evolution of
the detonation shock speed in time for f = 1, ν = 1/2 and n = 5.9 calculated from
a numerical simulation of (2.1)–(2.4) using the methodology described above. For
this case, Kp = −0.002892 (see § 6.2). A calculation from the linear stability analysis
shows that Re(α) = −8.60 × 10−5 and Im(α) = 0.062878, so that Kp <Re(α) < 0. An
exponential fit of the form described in § 8.1 to the slowly decaying amplitude of
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Figure 12. Detonation front speed Dn for early time calculated by DNI for f = 1, ν = 0.5:
(a) one-dimensional evolution for n= 5.9; (b) two-dimensional periodic channel evolution
along z = 0 for n= 2.4 and L =1.9. The grid resolution was 80 pts/hrl in each case.

Dn in figure 12(a) gives Re(α) = −8.61 × 10−5 and Im(α) = 0.062877, an excellent
agreement between the two results. Figure 12(b) shows the decay in amplitude of Dn

along z = 0 arising after a weak perturbation of the steady ZND wave for f = 1,

n= 2.4 and ν = 1/2 in a periodic two-dimensional channel with L = 1.9. For this
case, Kp = −0.024134. For a periodic channel of width L = 1.9, the wavenumber
k = 3.3069. A linear stability analysis calculation gives Re(α) = −0.0019355 and
Im(α) = 2.295462 for these parameters. A fit to the numerical solution shown in
figure 12(b) gives Re(α) = −0.0019365 and Im(α) = 2.295464. These results show that
for f = 1 and ν =1/2, modal solutions of the exponential form (4.5) are possible
provided Kp < Re(α) < 0 and that the agreement between the linear stability analysis
and a numerical simulation of the early-time damping behaviour of Dn is excellent.

9. Nonlinear evolution of unstable Chapman–Jouguet detonations for the
idealized condensed-phase model

In the final section, we discuss some long-time evolution calculations of one-
dimensional pulsating and two-dimensional unstable Chapman–Jouguet detonations
for the idealized condensed phase model. Again, these are calculated by direct
numerical integration of equations (2.1)–(2.4) using the shock-fitting, shock-attached
strategy (Henrick et al. 2006; Henrick 2007).

9.1. Pulsating instabilities

Figures 13, 14 and 15 show the long-time evolution of the detonation shock speed
of an initially supported, steady CJ detonation for ν = 1/2, and n= 5.95, n= 5.975
and n= 6. For n= 5.95 (figure 10), the linear stage of the growth persists over a
long time, due to the slow growth rate of the unstable mode (Re(α) = 0.00105). The
growth initially appears to saturate at around t =4500, but there is a second growth
stage for 5500 < t < 6500, before the oscillatory amplitude of Dn saturates, and the
detonation front enters a periodic limit cycle state with period T =91.8 and an
amplitude of around 3.5% of the initial CJ velocity. The late-time periodic behaviour
for (39000 < t < 40000) is shown in the (dDn/dt, Dn) phase portrait in figure 16(a).
The evolution of Dn for n= 5.975 is shown in figure 14. The initial stages of the
nonlinear saturation behaviour appear to indicate a ‘beating’ form of evolution, but
the amplitude of the beating cycle decays in time and for t > 40000, the shock speed
evolution appears to have limited to a single-mode periodic state. The phase portrait



76 M. Short, I. Anguelova, T. Aslam, J. Bdzil, A. Henrick and G. Sharpe

0 1000 2000 3000 4000 5000

0.98
0.99
1.00
1.01
1.02
1.03

Dn

Dn

60005000 7000 8000 9000 10000
 t 

0.98
0.99
1.00
1.01
1.02
1.03

Figure 13. Long-time evolution of the detonation front speed calculated by DNI for f = 1,
ν = 1/2 and n= 5.95. The grid resolution was 40 pts/hrl.
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Figure 14. Long-time evolution of the detonation front speed calculated by DNI for f = 1,
ν = 1/2 and n = 5.975. The grid resolution was 40 pts/hrl.

for n=5.975 where 39000 < t < 40000 is shown in figure 16b. The evolution of Dn for
n=6 is shown in figure 14. After the nonlinear saturation point for t > 2500, there
is a sustained ‘beating’ form of evolution in the amplitude variation of Dn. The total
amplitude variations of the oscillation in Dn are approximately 4% of the initial CJ
speed, with the beating oscillation having an amplitude of about 1% of the initial
CJ speed. In this case, we do not observe any decay of the beating cycle, and there
is no evidence of any periodic behaviour for t < 60000. This apparently multi-mode
evolution is observed in the phase portrait shown in figure 16(c) for 39000 < t < 40000.

A striking feature of the above nonlinear one-dimensional dynamics (which is repeated
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Figure 15. Long-time evolution of the detonation front speed calculated by DNI for f = 1,
ν = 1/2 and n = 6. The grid resolution was 40 pts/hrl.
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Figure 16. Phase plane (dDn/dt, Dn) representation of the detonation front evolution
calculated by DNI for f = 1, ν = 1/2 and (a) n= 5.95, (b) n= 5.975 and (c) n= 6. The
time interval over which each phase plane is shown is t ∈ [39000, 40000]. The grid resolution
was 40 pts/hrl.

for a range of other simulations we have conducted) is the relatively small magnitude
of the detonation shock velocity departures in the saturated nonlinear equilibrium
state from the underlying ZND value (Dn = 1) as the pressure exponent (n) is increased
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Figure 17. Evolution of the detonation front speed Dn in time for f = 1, ν = 0.5 and n= 2.4
in a periodic channel 0 � z � L, where L = 6. The black lines are the locus of the incident
shock.

significantly from its neutrally stable value. This property is markedly different to
that previously observed for one-dimensional pulsating detonations in the idealized
gas phase model.

9.2. Cellular instabilities

Figure 17 shows the long-time evolution of the detonation shock speed (Dn)
corresponding to the case shown in figure 11, i.e. for a two-dimensional unstable
detonation with f = 1, n= 2.4 and ν = 1/2 in a channel 0 � z � 6, with periodic
boundaries on z = 0 and z = 6. A cellular, diamond-like, pattern is clearly evident
in the channel that is reminiscent of the dynamics of cellular detonations formed
under the idealized gas phase model. Along any line of fixed z, the evolution involves
alternating periods of shock acceleration and deceleration. The black lines in figure 17
show the locus of the incident shock at various times in the evolution. There are
several interesting features to this plot; the first is the relatively small deflections
in the shock locus across the channel. The second is the relatively small departures
of the detonation shock velocity from the steady CJ value Dn = 1 (up to 7%).
Finally, the time scale over which a complete detonation cell is formed is 8.6, as
determined from figure 17. This compares to the linear analysis where the completion
of a period in the detonation speed along any fixed z, occurs over a time scale of
2π/Im(α) = 2π/0.7319 = 0.858 (table 2), almost identical to that recovered from the
simulation. Further insights into the reason for the small deflections in the shock locus
across the channel can be obtained from figure 18, which shows various snapshots of
the density variation behind the incident shock during the cell cycle. Transverse shock
waves and slip lines are clearly evident in a triple-point configuration; however, the
gradient discontinuity in the incident shock locus is small at the shock intersection
point. Figure 19 shows snapshots of density and pressure variations at one time
superimposed with constant pressure and density contours, demonstrating that the
transverse shock wave is weak in amplitude.

10. Summary
A linear stability analysis of CJ and moderately overdriven detonations (f > 1, f −

1 =O(1)) of ZND type has been conducted within the context of a general model
that incorporates the idealized gas phase and condensed-phase models. The idealized
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Figure 18. Snapshots of the density variation behind the detonation front in the periodic
channel 0 � z � 6. The variations are shown in the longitudinal coordinate frame x = xl − Dt.
The snapshots are taken at the times (a) t = 1003.40, (b) t = 1005.55, (c) t =1007.71 and
(d) t = 1009.86.
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Figure 19. Snapshots of pressure (a) and density (b) variations at t = 1005.55. The black lines
indicate contours of constant pressure (with values, from left to right, of 0.25 to 0.50 in steps
of 0.05) and density (with values, from left to right, of 1.4 to 2.0 in steps of 0.1).
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condensed-phase model is a basic model that is often used for the purposes of
mathematical analysis of detonation wave dynamics in condensed-phase systems. We
have provided a detailed examination of the spatial boundedness closure conditions
that are required for the linear stability analysis of the general model. These govern
the behaviour of the perturbation quantities at the end of the reaction zone for
reaction orders ν in the range 1/2 � ν � 1. The results of the linear analysis highlight
several differences in the global properties of the stability spectra between idealized
condensed and gas phase detonations. These include: the presence of only a single
unstable mode for CJ waves, and overdriven ZND waves that are more unstable
than the CJ waves. The results of the normal-mode analysis and those obtained
from early-time direct numerical integrations of unstable detonations defined by the
idealized condensed-phase model agree well. The case of weakly overdriven systems
where f > 1, f − 1 � 1, for which further difficulties arise in constructing the spatial
boundedness conditions for the linear analysis, will be considered in a future article.

For the idealized condensed-phase model, long-time direct numerical integrations
reveal that for unstable, one-dimensional CJ detonations, the evolution occurs in
a form of pulsating instability, while for unstable two-dimensional detonations,
detonation cells appear to form. However, although these dynamics are apparently
similar to those observed for unstable detonations in the idealized gas phase model,
in both the one- and two-dimensional cases for the idealized condensed-phase model,
the amplitude of the shock velocity deviations from its ZND value are relatively small
(typically of the order of a few per cent) even in the saturated long-time solution. Also,
in the two-dimensional case, the deflection in the shock locus angle at a point of triple
shock interaction is weak. These represent significant deviations from the nonlinear
dynamics of unstable detonations for the idealized gas phase model. Finally, from a
practical viewpoint, when the idealized condensed-phase model is used to mimic real
explosive systems, such as liquid nitromethane or solid PBX-9501, where a choice
of ν = 1/2 and a pressure sensitivity in the range n= 1 − 3 is normally employed
(Bdzil et al. 2003), a planar CJ detonation would only be stable to multi-dimensional
disturbances when the pressure sensitivity n< 2.168.
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